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Abstract
Motivated by experiment, we review the case for phase inhomogeneity in
URu2Si2. In this scenario, the paramagnetic hidden order phase coexists with
small distinct domains of antiferromagnetism whose volume fraction increases
with pressure. The implications for the nature of the hidden order are discussed.

The heavy-fermion material URu2Si2 poses a unique challenge. Discovered almost two
decades ago, it provides a classic example of a mean-field phase transition [1] at Tc = 17 K;
yet there is still no consensus on the nature of the underlying order. More specifically, the
transition is characterized by sharp anomalies in a number of bulk properties [2–4] and a
gap [5–8] that each develop at Tc. Initially the ordered phase of this material was characterized
as a spin density wave, but subsequent neutron scattering measurements [7, 8] indicated that
the size of the staggered moment is too small (∼0.02–0.04 µB/uranium atom) to account for
the substantial entropy loss which occurs at the transition [9].

A sequence of recent experimental developments has led to new insight into the nature
of the hidden order in URu2Si2. High-field measurements [10, 11] have revealed that the
staggered magnetization and the gap have different field dependences, suggesting that there are
two distinct order parameters, M and ψ . Initial theories assumed that the hidden order and the
spin antiferromagnetism were coupled and spatially homogeneous [12]. Pressure-dependent
neutron scattering studies [13] subsequently showed that the ordered antiferromagnetic
moment M in URu2Si2 grows roughly linearly with applied pressure, M ∝ P , up to
P0 = 1 GPa. Within the homogeneous scenario, this result requires a pressure-dependent
coupling between the hidden order and the magnetism (�F ∼ −ψM P); such a linear
coupling, required to nearly vanish at ambient pressure, is awkward to justify on symmetry
grounds.

6 Author to whom any correspondence should be addressed.

0953-8984/03/281965+07$30.00 © 2003 IOP Publishing Ltd Printed in the UK S1965

http://stacks.iop.org/JPhysCM/15/S1965


S1966 P Chandra et al

Pressure-dependent NMR studies [14] provided a natural resolution of this dilemma by
revealing that there exist distinct antiferromagnetic and paramagnetic regions whose relative
volume fraction changes with applied pressure and temperature. More specifically, the
single resonance associated with paramagnetism at high temperatures remains clearly at
temperatures T < Tc, where at finite applied pressure it coexists with two symmetric satellite
lines associated with antiferromagnetic ordering. The frequency shift associated with these
additional resonances is independent of applied pressure, indicating the presence of a constant
magnetic moment. However, the relative integrated intensities of the antiferromagnetic and
the paramagnetic lines are temperature- and pressure-dependent, and are naturally interpreted
as reflecting the relative volume fractions of spin ordered and disordered regions. Indeed,
assuming a fixed magnetic moment, the pressure dependence of the magnetic Bragg peak
observed in neutron scattering [13] is consistent with the antiferromagnetic volume fraction
taken from the NMR work [14]. The natural conclusion from these studies, supported by
earlier µSR data [15], is that the observed increase in the magnetization as a function of
pressure is simply a volume fraction effect [14]. Moreover, these measurements indicate
that at ambient pressure there exists a large pressure-independent moment that resides in less
than 10% of the material. The majority phase therefore contains no conventional spin order,
and theoretically the hidden order parameter is no longer accountable for the small but finite
presence of antiferromagnetism.

In the pressure-dependent neutron scattering experiments [13], the character of the
magnetic transition changes from mean field to Ising at P = P0. This feature, combined
with the observed linear pressure dependence of M for P < P0, is naturally interpreted as
originating from the presence of a bicritical point (figure 1(a)) [16]. In this scenario, at ambient
pressure the observed magnetization is a volume fraction effect which develops distinctly from
the hidden order via a first-order transition. We can study the phase behaviour of such a system
using the free energy

F = Fψ + FM + gψ2 M2 (1)

where FX = (TX (V ) − T )X2 + 1
2 u2

X X4 with X = {ψ, M} and Tψ = TM at a critical volume
Vc. If g2 � u2

ψ u2
M , a bicritical point exists [17] at V = Vc with an associated first-order line.

Transforming the T –V phase diagram into one for T –P (figure 1(a)), we remark that
the pressure P = − ∂ F

∂V is discontinuous across the first-order line in figure 1(a), leading
to two distinct pressure scales, Pψ and PM in the T –P plot (figure 1(b)) and an associated
coexistence region. There the fraction of the magnetic phase x is given by the expression
P(x) = (1 − x)Pψ + x PM , so the net magnetization is then

M = Mx = M

(
P − Pψ

PM − Pψ

)
. (2)

Equation (2) indicates the linear relation of the observed magnetization as a function of pressure
for P > Pψ where Pψ is small due to a large pressure change associated with the first-order
line in figure 1(a).

There are a number of experimental observations that are consistent with this scenario
where the hidden order and the spin antiferromagnetism are phase separated. Within this
framework the spatially inhomogeneous average ‘moment’ is taken to be

M2 = 1

V

∫
〈M(x)M(0)〉 d3x, (3)

where M(x) is the local staggered magnetization. For a fixed site-independent value of M(x),
equation (3) is simply proportional to the volume fraction of antiferromagnetic regions. Earlier
µSR studies [15] found that the muon precession signal, sensitive to magnetic ordering,
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Figure 1. Schematic diagrams graphically contrasting (a) temporally and (b) spatially
inhomogeneous moments that play key roles in the dynamical moment and the phase separation
scenarios respectively of URu2Si2.

developed abruptly at the transition Tc, suggesting a first-order transition of the magnetization.
Upon cooling, this precession frequency remained constant, indicating that the size of the
moment is temperature independent. By contrast, the amplitude of the precessing signal
increased with decreasing temperatures indicating a change in the underlying antiferromagnetic
volume fraction. Recent µSR studies have extended this work, confirming the increase
of the precession amplitude with applied pressure [18]; this result is consistent with the
NMR data [14]. At ambient pressure the onset temperatures of the hidden order and the
antiferromagnetism are very close, but they can be separated by both chemical [18] and
applied [19] pressure. Finally such measurements [18, 19] indicate that the onset detection
of the inhomogeneous antiferromagnetism is critically dependent on sample quality and
history, particularly as a function of pressure. This is to be expected in a system of spatial
inhomogeneities.

A proposal [20] alternative to phase inhomogeneity emphasizes the inferred presence of a
dynamical order parameter whose time dependence is invoked to explain observed behaviour
in URu2Si2. In particular resonant x-ray scattering, a probe with a timescale of τφ ∼ 10−14 s,
indicates a moment of 0.3 µB/uranium atom which is consistent with the entropy lost at
the transition [2, 9]. It is argued that there is temporal averaging of the moment over time-
reversed Néel states on the timescales probed by neutron scattering (τn ∼ 10−12 s), so only
a fraction of it is observed (0.02 µB/uranium) (figure 1(b)). Similarly, it is noted that NMR
and µSR measurements on URu2Si2, both of which have much longer observation timescales
than do neutrons, indicate no long-range magnetic order at all. In this scenario, the temporally
inhomogeneous average ‘moment’ is taken to be

M2 = 1

τm

∫
〈M(τ )M(0)〉 dτ (4)
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where M(τ ) is the dynamical staggered magnetization. Here τm refers to the measurement
time; because the moment fluctuates between different orientational states, longer and longer
time averaging occurs as τm is increased, leading to a decreasing value of M . Application of
pressure is argued to slow down the moment fluctuations, hence making the full amplitude of
the magnetic order parameter ‘accessible’ to neutrons. Indeed the observed saturated moment
measured under pressure by means of neutron scattering is consistent with the value observed
by means of fast resonant x-rays [13, 20].

It is instructive to compare the situation in URu2Si2 with that for the pseudobinaries
U(Pt1−x Pdx)3. For x � 0.01, neutron [21, 22] and magnetic x-ray scattering [23] experiments
reveal a small moment (0.02 µB/uranium atom), comparable in magnitude to that observed
in analogous measurements on URu2Si2 at ambient pressure. However, NMR [24] and µSR
experiments [25, 26] on these Pd-doped UPt3 materials do not detect this moment at all, leading
to the suggestion that it fluctuates on timescales intermediate between the observation time
windows of the two sets of probes. The development of this small-moment antiferromagnetic
state occurs via a crossover [27] rather than a transition and is not accompanied by any
thermodynamic anomalies. By contrast, at higher dopings (0.02 � x � 0.08), both
neutrons and muons see a large moment (∼0.6 µB) and there are associated discontinuities
in bulk properties [27]. Here the key point is that fluctuating moments do exist and their
development is associated with a crossover and nota true phase transition; they can enhance pre-
existing thermodynamic anomalies [28] but they cannot produce such discontinuities purely
by themselves. In contrast to the situation in U(Pt1−x Pdx)3 for low doping (x � 0.01), in
URu2Si2 there are dramatic thermodynamic signatures of a true phase transition coexisting
with the presence of a small static moments [9], that cannot be solely explained by dynamical
fluctuations. Similarly the pressure-independent frequency shift of the antiferromagnetic
resonance lines detected in NMR measurements [14] at temperatures T < T0 is difficult
to reconcile with a homogeneous dynamical moment whose fluctuating timescale is reduced
with applied pressure.

Recent high-field measurements (figure 2) of the antiferromagnetic moment and the
magnetic excitations with neutron scattering [11] also yield insight into the question of spatial
inhomogeneity of the spin magnetism. These experiments indicate that the field dependence
of the moment has a distinctive inflection point at 7 T, and remains finite but small up to fields
of order 17 T. Such behaviour is strongly suggestive of a local linear coupling term for M and
ψ of the form

�F = g
∫

d3x M(x)ψ(x). (5)

Indeed it was shown earlier [12] that the presence of such a term in the Landau–Ginzburg free
energy leads to a field dependence of the staggered magnetization, M[h], of the form

M2[h] = M2
0

[1 − h2]

(1 + δh2)2
, (6)

where h = H
Hc

is the ratio of the external and the measured critical magnetic fields (Hc = 40 T)

and δ is defined through the relation Tm(V , h)− T = [Tm(V )− T ](1 + δh2). We note that this
expression has a point of inflection around the field value Hm ∼ Hchm where hm = 1√

1+2δ
;

qualitatively this is because M decreases with decreasing h but, due to its coupling with ψ ,
must maintain a nonzero value up to h = 1 (figure 2).

At first sight, the presence of the observed inflection point [11] is rather puzzling,
particularly as the original phenomenology [12] was developed for homogeneously coexisting
magnetic and hidden order parameters. Certainly it appears to confirm the existence of a linear
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Figure 2. A sketch of the data [11], showing the field variation of the neutron scattering intensity
from the staggered moment, compared with the predictions (6) of Landau–Ginzburg theory. The
dashed curve shows the variation of the hidden order gap with the field, while the dotted curve
shows the quadratic extrapolation of the low-field dependence of the moment.

coupling between M and � . In a homogeneous system, such a term can only occur in the
free energy if (i) M and ψ have the same ordering wavevector and (ii) ψ breaks time-reversal
symmetry. From neutron scattering measurements [7, 8] it is known that M is commensurate,
whereas there are many indications that the hidden order is not. In particular, we expect ψ to
be incommensurate due to the fact that the observed entropy loss and the accompanying gap
suggest that it results from a Fermi surface instability. Furthermore, the observed insensitivity
of the elastic response [29] at Tc is consistent with the presence of an incommensurate density
wave that couples weakly to uniform strain. Thus it appears that in a homogeneous system the
presence of a linear coupling term for the magnetization and the hidden order is unlikely, due
to the dissimilarity of their respective wavevectors. However, in a phase-separated scenario,
it may be easier to motivate the presence of such a coupling between M and ψ . The spatial
inhomogeneity of the spin order and the distribution of antiferromagnetic domain sizes mean
that translational invariance is lost, making it possible for a local coupling to develop between
the two order parameters. The presence of stacking faults and other defects will tend to enhance
the strength of this coupling. Indeed, in the presence of disorder it is difficult [30] to avoid a
local linear coupling between random fields and a coexisting order parameter if such a term in
the free energy is allowed by time-reversal invariance.

The presence of an inflection in the field-dependent magnetization is an indication that
the hidden order parameter breaks time-reversal symmetry, consistently with previous NMR
measurements [31, 32]. Motivated both by experiment and by symmetry considerations, we
have argued elsewhere [33] that the two leading candidates for producing the hidden order are a
quadrupolar charge density wave and an orbital antiferromagnet. The key factor distinguishing
these contenders is the presence or absence of time-reversal breaking. Thus the recent high-
field measurements [11] point towards orbital antiferromagnetism. Naturally it would be
optimal to have a direct experimental test of this conjecture. Neutron scattering could provide
such a probe, particularly since the form factor associated with the extended current loops of
the orbital antiferromagnet is different from that of point spins [32]. More specifically, we
have used the spatial distribution of the orbital fields consistent with the NMR results [31] to
determine the positions, the intensities and the form factor associated with the peaks anticipated



S1970 P Chandra et al

in neutron scattering measurements. Perhaps most important, we find [32] that the maximum
scattering intensity is predicted to lie in a ring �Q = �Q0 + �q of radius |�q| ∼ 0.2 centred around
wavevector �Q0 = (001), where �q lies in the a–b plane. It should be noted that scattering in the
vicinity of �Q0 is forbidden for the case of ordered spins aligned along the c-axis, for their dipole
form factor is proportional to (Q̂ × �M)2, and thus vanishes for Q̂ ‖ �M . Hence the presence
of neutron scattering at this particular wavevector would be a ‘smoking gun’ confirmation of
incommensurate orbital antiferromagnetism as the enigmatic hidden order.

In summary, motivated by experiment, we have presented the case for phase separation of
spin magnetism and hidden order in URu2Si2. We argue that pressure-dependent neutron [13]
and nuclear magnetic resonance [14] studies are naturally interpreted in terms of a spatially
inhomogeneous moment whose volume fraction increases with applied pressure. The
alternative proposal of a temporally inhomogeneous moment that is spatially homogeneous
cannot, to our knowledge, account for the marked entropy loss and the bulk discontinuities
associated with the transition at Tc. Furthermore, recent observation of a marked inflection
in the field dependence of the magnetization indicates an underlying linear coupling between
M and ψ , which is difficult to understand in a homogeneous scenario due to the disparity of
their wavevectors. By contrast, such a term could be realized as a local coupling in a phase-
segregated system where the microscopic spatial inhomogeneities of the order parameters
break translational symmetry. It is important to emphasize that, even within the phase
separation scenario, such a coupling can only exist if the hidden order parameter breaks
time-reversal invariance. Thus the field-dependent magnetization studies [11], like earlier
NMR measurements [31], point towards incommensurate orbital antiferromagnetism as a
key contender for being the hidden order. A direct test of this conjecture would be neutron
measurements at a particular wavevector where scattering is forbidden for point spins. We
eagerly anticipate the results of these measurements.
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